動的希釈法による臭気測定

第１報 連続空気希釈装置の試作およびその実用性

Measurement of odor with a dynamic olfactometer
1. Manufacture of a trial apparatus for continuous air dilution and the practical application

竹内 敬文* 永田 好男* 古川 修* 重田 芳廣*
Norifumi Takeuchi, Yoshio Nagata, Osamu Furukawa
and Yoshihiro Shigeta

1 はじめに

官能試験法により悪臭を評価し、その強さを数量化するにはいくつかの方法がある。それにはにおいの強さを表わす臭気強度表示およびにおいの快、不快度を表わす嫌悪性表示、それににおいを閾値にまでするのに必要な希釈倍数で表わす臭気濃度（広播性）とがある。

臭気濃度は、空気希釈法の原理に基づいた方法で求められる。この空気希釈法には、静的希釈法（バッチ法）として無臭室、注射器、におい袋を測定容器として用いる方法があり、動的希釈法（連続法）として連続空気希釈装置を用いた方法がある。これらのうちで臭気濃度測定方法として巧みに利用するのない場合でもできるASTM注射器法、および3点比較式におい袋法。悪臭発生源臭気あるいは環境臭気の臭気濃度を求めるのに一般に用いられている。著者らの研究室では、3点比較式におい袋法を採用しているが、これは注射器法と比較して希釈試料量が多いためベネルが楽にかくことができ、かつ比較法を採用しているためベネルの応答の再現性がよいためである。しかし、3点比較式におい袋法には、においの有無が閾値度測定において妨害する。試料製調損度の正確性に欠ける。あるいは試料の調製および測定に時間がかかるなどの問題がある。

そこで本研究では、これらの問題を解決するため、ほとんど固有臭のない材質をもって、ベネルの再現性を高めるためにおい袋法と同様な3点比較法をとり入れ。

* 本研究を担当したのは、公害防止センター公害部特殊公害課
Odor Laboratory, Department of Environmental Pollution, Japan Environmental Sanitation Center
図1 連続空気希釈装置のフローシート

また、装置の配管は試料側に内径1mmのテフロンチューブ、希釈空気側に内径4mmのテフロンチューブを使用した。試料側の内径を1mmとしたのは、配管の径が大きいとそれだけ試料の滲度が遅れるためである。本装置のフローシートを図1に示す。

3 装置の特性

3-1 希釈率の変化

試料流量を変化させたとき、これと比例した希釈率が得られるかを確かめるためトルエンを試料として実験を行った。希釈空気を6l/minに調製し、試料流量を150ml/min、100ml/min、50ml/min、25ml/minに変化させ、希釈試料をガスタイドで採取し、GCで測定した。また、同時に希釈試料を直接トータル炭化水素計へ導き測定した。測定チャートを図2に示す。この結果GC、トータル炭化水素計の実測濃度は試料流量の比率とほぼ一致していることがわかった。

3-2 理論希釈倍数と実測希釈倍数

本装置では流量比混合法を採用しているため、希釈空気流量/試料流量が理論希釈倍数となる。しかしこ流量比の制御を手動的に行っていることから、理論希釈倍数と実際の希釈倍合にずれが生ずることが考えられた。そこで、n-ヘキサン800ppmの標準ガスを本装置で30倍〜1,600倍の範囲に希釈し、その希釈ガス濃度をGCで測定した。理論希釈倍数と実測希釈倍数の関係を図3に示す。この結果理論希釈倍数に対する実測希釈倍数
数（原ガス濃度）の誤差率は、およそむね18%の範囲に入ることがみとめられた。

図3 理論希釈倍数との実際希釈倍数

図4 流量調整後の希釈ガス濃度の安定性（全蒸留水素計測定チャート）

図5 流量調整後の希釈ガス濃度の安定性（ガスクロマトグラム）

図6 試料流路遮断時の残留濃度（全蒸留水素計測定チャート）

図7 試料流路遮断時の残留濃度（ガスクロマトグラム）

3-3 希釈ガス濃度の安定性
試料流量を変化させた場合、混合器内で試料濃度が安定するまでに要する時間および試料導入を停止した場合の残留率について検討した。試料流量100 ml/min．に調整し混合器Aに数分間混ぜた後、5分間かくして流路を、パネル用混合器（B、C、D）に切替えた場合、約2秒で一定の濃度に達することがわかった（図4、図5）．しかし流量計に接続した混合器A内の濃度が安定するには、2～5分間要した．またこの状態から再び試料の導入を停止し、吐出空気中の試料濃度を測定した結果1～
4 測定例

4-1 現場臭気による臭気濃度の測定
本装置を使用して実際の悪臭現場の試料について臭気
濃度を測定し、同時ににおい袋法による測定も併せた
ため実施した。

1) 臭気濃度測定方法
本装置での臭気濃度測定は3点比較法で行った。次に
測定手順を述べる。まずオペレーターは、4個の混合器
に希釈空気を各6/min。流して試料用フローメータに
一定量の試料を流し、試験用混合器（A）に所定希釈倍
数の試料を作製する。次に5ガラスコックを切り替えること
で、試料を残り3個の混合器（B、C、D）のうちどれか1
つにつ流れるようにする。嗅覚パネルは、3個の混合器
から流れる空気（所定希釈倍数になった希釈試料1個と
希釈空気だけの無臭のもの2個計3個）を、それぞれの
鼻をかき上 있는데をかぎ、3個のなかでにおいのあるも
のを1つ選ぶ。また、においのあるものが判別できない
ときは「不明」と答えるようにする。パネルの解答が正
解の場合は、次に1段階希釈倍数を上げていく。パネル個
人の解答が不正解か不明になった希釈倍数でそのテスト
は終了。

次に3点比較法におい袋法の臭気濃度測定手順を述べ
る。約3lにおい袋（材料はテトラール、マレーシアで
においをかくためガラス管が取りつけられている）を
3個用意し、そのうち2個の袋は無臭空気を入れ残りの
1個に注射器で試料を注ぎ入れて所定の希釈倍数の試料を
調製する。そして、この3個の袋をパネルに渡す。パネ

<p>| 表1 臭気濃度測定例（真空ポンプ排ガス） |</p>
<table>
<thead>
<tr>
<th>希釈倍数</th>
<th>30</th>
<th>100</th>
<th>200</th>
<th>550</th>
<th>1000</th>
<th>3000</th>
<th>希釈倍数の対数値</th>
<th>パネルの平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>希釈倍数の対数値</td>
<td>1.48</td>
<td>2.00</td>
<td>2.48</td>
<td>2.74</td>
<td>3.00</td>
<td>3.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>希釈装置</td>
<td>希釈装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>パネル</td>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.24</td>
<td>logx=2.44</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.24</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.51</td>
<td>x=280</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.87</td>
<td>x=s=2.89</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.24</td>
<td>2.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>におい袋法</td>
<td>におい袋法</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>パネル</td>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.74</td>
<td>logx=2.74</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.24</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.24</td>
<td>x=550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>3.24</td>
<td>x=s=0.500</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.24</td>
<td>2.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 表2 臭気濃度測定例（汚泥焼却排ガス） |</p>
<table>
<thead>
<tr>
<th>希釈倍数</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th>1600</th>
<th>3000</th>
<th>6000</th>
<th>1万</th>
<th>希釈倍数の対数値</th>
<th>パネルの平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>希釈倍数の対数値</td>
<td>2.00</td>
<td>2.48</td>
<td>3.00</td>
<td>3.18</td>
<td>3.48</td>
<td>3.78</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>希釈装置</td>
<td>希釈装置</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>パネル</td>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>3.21</td>
<td>logx=3.306</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>3.09</td>
<td>x=2100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>3.51</td>
<td>x=s=0.193</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>3.21</td>
<td>3.51</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>3.74</td>
<td>3.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>におい袋法</td>
<td>におい袋法</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>パネル</td>
<td>A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.24</td>
<td>logx=3.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.24</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>2.74</td>
<td>x=1100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>3.24</td>
<td>x=s=0.570</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>x</td>
<td>3.24</td>
<td>3.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表3 3点比較法による臭気調査例

<table>
<thead>
<tr>
<th>採取試料</th>
<th>採取日時</th>
<th>バネル数</th>
<th>希釈範囲</th>
<th>臭気濃度</th>
<th>バネル間の臭気濃度の標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>真空ポンプ排ガス</td>
<td>10:30</td>
<td>5</td>
<td>10〜3,000</td>
<td>280</td>
<td>550 0.289 0.500</td>
</tr>
<tr>
<td>汚泥処理排ガス</td>
<td>11:05</td>
<td>5</td>
<td>100〜3,000</td>
<td>2,100</td>
<td>1,100 0.193 0.570</td>
</tr>
</tbody>
</table>

臭気濃度：試料臭気が個体濃度（嗅覚刺激する最低物質濃度）になるまでに要した無臭空気の
希釈倍数

は、におい袋のガラス管に鼻あてをしておいをしてから、3個のうちにおいのある袋を選ぶ。バネルの解説方法
およびテスト方法は、希釈装置と同様である。以上の
方法で得られた結果を次のように処理して、各試料の臭
気濃度を求めめる。

まず、各バネルのそのにおいに対する臭気濃度を求め
る。各バネルの臭気濃度は、各バネルごとに正解であっ
た最高希釈倍数（対数値）と不正解または不明の希釈倍
数（対数値）の中間の値とする。このようにして得ら
れた各バネルごとの臭気濃度をバネル全体について幾何
平均し、その試料の臭気濃度を求める。

2) 臭気濃度測定例

希釈装置と3点比較法におい袋法による測定結果の記
録例を表1、表2、表3に示す。バネル別に求めた臭気
濃度の標準偏差は、におい袋法より連続希釈法が若干小
さい値を示した。本装置では、におい袋法よりも細かい
希釈系列の判定が容易であること、またにおい袋の固有
の影響が取り除くことなどの点で精度の向上が期待
できるものと考えた。今後さらに、両測定法による測定
値の比較検討を加えていきたいと思う。

4-2 成分濃度と臭気強度の関係

動的希釈装置は、臭気濃度測定への利用とともに試料
濃度を連続的に変化することによりおいの強度、質、
構造性をも基準時に測定できる。悪臭の野外調査では、物
質濃度をときにして急激な変化をするものであり、その
変動を感覚的にとらえるために複数のバネルにより臭気

図8 トルエン濃度と臭気強度

黒：臭気強度

1 2 3 4 5

六段階臭気強度

赤ちゃんを感じ
できるにおい

何のにおい

明亮なにおい

伝でにおい

他のにおい

強いにおい

強いにおい
強度を経時的に測定する必要が生ずる。そこで、本装置を用い室内実験的に重量濃度と臭気強度について検討を加えた。試料ガスとしてトルエンを用いた。濃度は0～120ppmの範囲で4段階に変化させ、一定濃度の吐出時間が20秒～1分とした。オペレータがトルエン濃度を時間とともに変化させるわけであるが、そのときに変動パターンは、野外調査を想定したものを任意に3つ選んだ。パネルの応答は感知したもののすばやく記録する必要があり、そこで臭気強度表示チェッカーを試作し、使用した。測定データを図8に示す。測定の結果、パネルの応答は大むねトルエン濃度の変化をとらえているとみなされる。とくに急激な変化に対しては、濃度と対応との間に高い相関がみられた。しかしながら、比較的高濃度の臭気を連続してかがせた場合臭気強度は増減し、順応による影響と考えられる記録例があった。ここでの測定は比較的短時間の測定であり、長期間同様の測定を実施した場合本実験と同様の結果が得られるとは考えられない。

5 まとめ

流量比法により、希釈倍数を連続的にかえられ、さらに3点比較法をといための連続気希釈装置を試作して、その実用化の検討をおこなった。
1) GCおよびトータル炭化水素計で本装置の希釈倍数および安定性について検証した結果、誤差率±18%の範囲に入り、かつ安定性の点でも満足できる結果が得られた。
2) 下水処理場からの試料を3点比較式におい袋法と、本装置の両方法で臭気濃度を測定した結果、本装置の実用におよぶ比較的良好な成績が得られた。
3) 本装置の希釈系は30倍～1,600倍と広い範囲にわたっているが、希釈試料の流量範囲を増したり、2段希釈を採用することでさらに希釈系をふやすことができる。

引用文献
1) ASTM, D 1391-57. : Standard method for measurement of odor in atmospheres(Dilution Method).
3) 悪臭物質の測定等に関する研究(昭和49年度環境庁委託研究報告書), 日本環境衛生センター, 1975.

Summary
At the present time, concentration of odors emitted from exhaust stacks, or in the atmosphere are usually measured with the syringe dilution technique. In practice, these procedures seem to be cumbersome, time consuming and erratic. We made a new apparatus for continuous dilution of air. A diluted odor sample and two non-odorous air blanks were presented dynamically at each dilution level. Each panel was requested to identify the port with the o-dorous sample among three ports including two blank air ports. Concentrations of the odors were obtained for the threshold of the lowest concentration that the panel could recognize. The error of the value measured with this apparatus was ±18%. The apparatus was used not only to measure odor concentration but also to examine the relationship between concentration of the substance and intensity of the odor.