土壤中における含油廃棄物の分解性

Degradability of oils contained in industrial solid waste in soil

成毛精一* 小沢賢* 早川良太*

Seiichi Naruke, Masaru Ozawa and Ryota Hayakawa

1. まえがき

「廃棄物の処理および清掃に関する法律」によれば、おおよそ5%以上の油分を含む廃棄物は、廃油との混合物としてとり扱われ、廃油と同じくあらかじめ焼却したのちでなければ埋立処分できないことになっているが、このような廃棄物であっても、そのまま埋立処分を行ったとした場合、土壤中において油分が徐々に分解されて環境負荷をひきおこす至らないものであるし、また反対に油分が5%未満のものであっても、非分解性であり、長期にわたり汚染源として残存する可能性があるものと考えられる。すなわち、土壤中における油の安定性が、これらの問題を評価する上で重要であるが、土壤中における油の分解を扱った研究報告例は少ない。

そこでいくつかの含油廃棄物および標準的な油の単体を土壤中で摂取混ぜ、一定の温度と湿度のもとで数か月放置した場合、油の量およびその化学的組成は時間的にどのように変化するかを明らかにするための実験を実施した。

2. 実験方法

含油廃棄物としては表1に示す4試料、油としては表2の3試料を土壌（川崎市多摩丘陵の火山灰土、一般細菌数が8×10^6個/乾燥1g）中にそれぞれ油分を混ぜ、所定の湿度を調節して所定の温度を下記するように加えてよく混ぜ合わせ、一定温度で数か月放置した場合、油の量およびその化学的組成は時間的にどのように変化するかを明らかにするための実験的検討を行った。

3. 結果および考察

3-1 n-ヘキサン抽出物質

各試料につきおおの図2～8に示すような経時変化がみとめられた。また試料コントロールの変化を表6～7に示す。

3-2 ガスクロマトグラフおよび赤外分光分析

0日に、10日後、30日後、50日後、80日後および115日後の6時点について測定を行った。ここには0日、115日後および試料コントロールについてのみを、動植物油としては大豆油、動植物油としてはB重油のチャートを図9～12に示す。なお試料の放置前の試料は土壤と混合直後のものとほとんど差異がないのでここでは省略した。

3-3 結果の概要

n-ヘキサン抽出物質量の経時変化は、動植物油試料については明白な減少の傾向がみとめられ、なかでも大豆油がとくに初期において急激に減少があり、10日間で添加量の45%が消失してしまっているがその後の減少速度は速かった（図6）。

動植物油試料では動植物油系を含む変化が緩慢で、とくにB重油については全期間を通じてほとんど変化がみとめられていない（図8）。
表1 実験に用いた含油廃棄物試料の分析結果

<table>
<thead>
<tr>
<th>試料名</th>
<th>外観</th>
<th>乾燥減量（％）</th>
<th>熱しゃく減量（％）</th>
<th>n-ヘキサン抽出物質主成分の組成</th>
</tr>
</thead>
<tbody>
<tr>
<td>植物油廃棄物（大豆油製造工場）</td>
<td>黒褐色土塊状</td>
<td>2.4</td>
<td>53.0</td>
<td>C16:0 palmitic acid 11.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C18:0 stearic 5.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C18:1 oleic 28.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C18:2 linoleic 48.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C18:3 linolenic 6.6%</td>
</tr>
<tr>
<td>植物油廃棄物</td>
<td>黒色粘状</td>
<td>28.3</td>
<td>10.4</td>
<td>C15H30 undecane 45.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C15H26 dodecane 55.0%</td>
</tr>
<tr>
<td>原油タンクスラッジ</td>
<td>黒色粘状</td>
<td>6.6</td>
<td>74.0</td>
<td>C18〜C26 n-paraffine</td>
</tr>
<tr>
<td>油水 分離 機油汚泥</td>
<td>黒色不均質泥状</td>
<td>20.8</td>
<td>11.1</td>
<td>C18〜C26 n-paraffine</td>
</tr>
</tbody>
</table>

表2 実験に用いた油試料の分析結果

<table>
<thead>
<tr>
<th>試料</th>
<th>主成分の組成</th>
</tr>
</thead>
<tbody>
<tr>
<td>大豆油</td>
<td></td>
</tr>
<tr>
<td>C16:0</td>
<td>10.7% (10.9%)*</td>
</tr>
<tr>
<td>C18:0</td>
<td>3.9（4.1）</td>
</tr>
<tr>
<td>C16:1</td>
<td>23.9（24.1）</td>
</tr>
<tr>
<td>C18:2</td>
<td>54.4（54.1）</td>
</tr>
<tr>
<td>C18:3</td>
<td>7.1（6.8）</td>
</tr>
<tr>
<td>魚油</td>
<td></td>
</tr>
<tr>
<td>C14:0</td>
<td>5.0%（5.0%）**</td>
</tr>
<tr>
<td>C14:1</td>
<td>0.4（0.1）</td>
</tr>
<tr>
<td>C16:0</td>
<td>11.8（11.0）</td>
</tr>
<tr>
<td>C16:1</td>
<td>10.3（10.4）</td>
</tr>
<tr>
<td>C18:0</td>
<td>0.5（0.5）</td>
</tr>
<tr>
<td>C18:1</td>
<td>1.5（1.9）</td>
</tr>
<tr>
<td>B重油</td>
<td>C18〜C26 n-paraffine</td>
</tr>
</tbody>
</table>

*（）内は溶媒の和（％）のデータ **（）内は組成のデータ

以下各試料ごとに動物油系、植物油系と分けてガスクロマトグラフ（以下 GC と略す。）あるいは赤外分光分析（以下 IR と略す。）の所見にもとづき経時変化についての考察を行ってみる。

3-4 考察

3-4-1 動植物油系

(1) 大豆油

試料は、メチルエステル化後GCにかけた結果、C16:0、C18:0、C16:1、C18:1、C18:2、C18:3の脂肪酸が確認され、さらにIRによる3010cm⁻¹活性メチレン基C-H伸縮振動、2960〜2850cm⁻¹C-H伸縮振動、1740cm⁻¹C=O伸縮振動、1470〜1330cm⁻¹C-H変角振動、1300〜1000cm⁻¹C-O伸縮振動、720cm⁻¹（CH₃-n-骨格振動等の吸収から、上記脂肪酸によって構成されるエステル（トリグリセライド））であることわかる。

土壌内分解については、n-ヘキサン抽出物質量をみると、最初の10日間でいちじるしい減少を示し、その後、緩慢に減少してくることが明らかとなった。GCによる脂肪酸組成の経時変化は表8のとおりであるが、不飽和酸の減少が顕著で、C18:2、C18:3はすでに10日後（GCチャート省略）で痕跡となった。また115日後では、確認された脂肪酸の90%以上は飽和酸が占めていることからみて、不飽和酸がその二重結合のために分解を受けやすいことがわかる。なお大豆油単独の場合には、表8に示すように開始前と150日後とでは組成変化がみとめられていないことに、上記は土壌と混合したことによって生じた分解によるものであることがある。

またIRの結果からも土壌中に混合した大豆油は、
図1 分析フローシート

* 6〜7時間
** n-ヘキサンが少量残るまで蒸発させ、さらに空気を送入して残ったn-ヘキサンを揮散させる。
*** 乾燥器内で30分間乾燥後デシケーター中で30分間再乾燥。

表3 動植物油（メチルエステル化）のガスクロマトグラフの条件

<table>
<thead>
<tr>
<th>型</th>
<th>HITACHI 163型</th>
</tr>
</thead>
<tbody>
<tr>
<td>検出器</td>
<td>FID</td>
</tr>
<tr>
<td>カラム</td>
<td>3mmφ×2m ガラスカラム</td>
</tr>
<tr>
<td>液相</td>
<td>20% DEGS</td>
</tr>
<tr>
<td>担体</td>
<td>Unipor KA</td>
</tr>
<tr>
<td>カラム温度</td>
<td>200℃</td>
</tr>
<tr>
<td>検出器温度</td>
<td>250℃</td>
</tr>
<tr>
<td>導入口温度</td>
<td>250℃</td>
</tr>
<tr>
<td>キャリヤーガス流量</td>
<td>Na2CO3 400ml/min</td>
</tr>
<tr>
<td>水素ガス流量</td>
<td>0.95kg/cm²</td>
</tr>
<tr>
<td>空気流量</td>
<td>2.0kg/cm²</td>
</tr>
<tr>
<td>チャートスピード</td>
<td>10mm/min</td>
</tr>
</tbody>
</table>

10日目でいちじるしい変化がみとめられる（IR チャート省略）。3700〜3000cm⁻¹, 2700〜2400cm⁻¹ に広いOH伸縮振動, 1740cm⁻¹ と1710cm⁻¹ に二つのC=O伸縮振動の吸収が現れているところから、エステルの加水分解と、それによる脂肪酸の遊離が推定できる。

さらに時間経過にともない、1710cm⁻¹ C=Oの吸収が強くなり、C=O亜吸収帯のパターン変化。940cm⁻¹ 脂肪酸二塩和体のOH変角振動の吸収等からエステル分解の進行にともなって遊離脂肪酸の増加がうかがえる。またGC チャート上に、分解生成物と思われるピークが多数出現していることから、エステルの加水分解からさらに、脂肪酸の酸化分解まで進行しているものと思われる。

表4 香料油（脂肪族炭化水素）のガスクロマトグラフの条件

<table>
<thead>
<tr>
<th>型</th>
<th>SHIMADZU GC-6AM 型</th>
</tr>
</thead>
<tbody>
<tr>
<td>検出器</td>
<td>FID</td>
</tr>
<tr>
<td>カラム</td>
<td>3mmφ×2m ガラスカラム</td>
</tr>
<tr>
<td>液相</td>
<td>20% OV-17</td>
</tr>
<tr>
<td>担体</td>
<td>Chromosorb W, AW, DMCS</td>
</tr>
<tr>
<td>カラム温度</td>
<td>50〜250℃(8℃/分) *100℃</td>
</tr>
<tr>
<td>検出器温度</td>
<td>320℃</td>
</tr>
<tr>
<td>導入口温度</td>
<td>320℃ *150℃</td>
</tr>
<tr>
<td>キャリヤーガス流量</td>
<td>N2 50ml/min</td>
</tr>
<tr>
<td>水素ガス流量</td>
<td>0.5kg/cm²</td>
</tr>
<tr>
<td>空気流量</td>
<td>1.0kg/cm²</td>
</tr>
<tr>
<td>チャートスピード</td>
<td>5mm/min *10mm/min</td>
</tr>
</tbody>
</table>

* 香料油腐食白金の分析条件

表5 紫外分光分析の条件

<table>
<thead>
<tr>
<th>型</th>
<th>HITACHI 215型</th>
</tr>
</thead>
<tbody>
<tr>
<td>測定方法</td>
<td>液膜法</td>
</tr>
<tr>
<td>窓板</td>
<td>NaCl~KBr</td>
</tr>
<tr>
<td>GAIN</td>
<td>2</td>
</tr>
<tr>
<td>Scan Speed</td>
<td>4000〜6500cm⁻¹/5分</td>
</tr>
</tbody>
</table>

図2 植物油腐食白金を混入した塩酸試料のn-ヘキサン抽出物質量の経時変化

図3 香料油腐食白金を混入した塩酸試料のn-ヘキサン抽出物質量の経時変化
図 4 原油タンクスラッジを混入した土壌試料の n-ヘキサン抽出物質量の経時変化

図 5 油水分離機で油を混入した土壌試料の n-ヘキサン抽出物質量の経時変化

図 6 大豆油を混入した土壌試料の n-ヘキサン抽出物質量の経時変化

図 7 魚油を混入した土壌試料の n-ヘキサン抽出物質量の経時変化

図 8 B重油を混入した土壌試料の n-ヘキサン抽出物質量の経時変化

表 6 試料コントロール（含油廃棄物）の経時変化

<table>
<thead>
<tr>
<th>試料名</th>
<th>ヘキサン抽出物質量（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>放置前</td>
<td>155日後</td>
</tr>
<tr>
<td>植物油廃自土</td>
<td>26.1</td>
</tr>
<tr>
<td>貯物油廃自土</td>
<td>11.9</td>
</tr>
<tr>
<td>原油タンクスラッジ</td>
<td>42.1</td>
</tr>
<tr>
<td>油水分離機汚油</td>
<td>5.9</td>
</tr>
</tbody>
</table>

表 7 試料コントロール（試料）の経時変化

<table>
<thead>
<tr>
<th>試料名</th>
<th>ヘキサン抽出物質量（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>放置前</td>
<td>155日後</td>
</tr>
<tr>
<td>大豆油</td>
<td>1.5</td>
</tr>
<tr>
<td>魚油</td>
<td>1.5</td>
</tr>
<tr>
<td>B重油</td>
<td>1.5</td>
</tr>
</tbody>
</table>

(2) 植物油廃自土
試料は大豆油の精製過程より排出されたものであるため、GCで確認したかぎりでは試料の n-ヘキサン抽出物質の成分、組成が大豆油と同一であった。またIRからも、エステルの構造をなしていることが認められるが、3600cm⁻¹付近にO-H伸縮振動と思われる吸収があり、すでに若干の水解分解があったことがわかる。

n-ヘキサン抽出物質量と脂肪酸組成の経時変化においても上と同様の傾向を示しているが、土壌内への吸収量は油分量としては同一でありながら、大豆油と比べると、n-ヘキサン抽出物質の減少はさほどない。これには酸性自土による低pH、白土に対する油分の強い吸着等により酸化分解が大豆油単独の場合よりもすくないことによるものと思われる。なお、GCによる脂肪酸組成の経時変化を表9に示す。

(3) 魚油
試料の脂肪酸組成は表2に示すとおり、C₁₄～C₂₂の
図9 大豆油を混入した土壌試料のガスクロマトグラムの著時変化
① Palmitic acid, ② Stearic acid, ③ Oleic acid, ④ Linoleic acid, ⑤ Linolenic acid

図10 大豆油を混入した土壌試料の赤外吸収スペクトルの著時変化
飽和および不飽和脂肪酸より成り、とくに C16F₄, C18F₆, C20F₈ の高度不飽和脂肪酸を含むことが特徴である。
土壌内実験において n-ヘキサン抽出物質量は、著時的に顕著な減少を示しているが、さきの植物油試料にみられたような初期における急激な減少はみられなかった。IR からは植物油試料と同様にエステルの加水分解と脂肪酸の遊離が10日目の試料においてみとめられ（IR チャート省略）、その後さらに脂肪酸が増加していく傾向もよく類似している。GC による脂肪酸組成の変化（表10）についても植物油試料と同様な傾向を示しているが、二重結合を多く含む高度不飽和酸が10日目に減少

図11 B豆油を混入した土壌試料のガスクロマトグラムの著時変化
となっていることは特筆すべきことである（IR チャート省略）。一般に不飽和脂肪酸はその二重結合部位が切断され、二重基酸やハイドロキシ酸が生成し、これ
がさらにケトン、アルデヒド、酸素等に分解されていくと考えられているが、この反応は温度不飽和酸であるほど速いと言われる。魚油魚油は空気中に発火する現象があることから、この酸化反応が空気中でも容易に起こると考えられ、魚油のみならず、植物油試料においても空気酸化によるn-ヘキサシン抽出物質の減少がかなりのウエイトを占めることが考えられる。

3-4-2 蛋白原系

（1）植物油腐白土

まず試料中の蛋白Оの組成は、GCの結果によれば、C_{18}, C_{19}の直鎖飽和炭化水素（n-パラフィン）がその主体をなすことがわかるが、このことはIRにおいても2960〜2850cm^{-1} C-H伸縮振動、1460cm^{-1} CH₃非対称変角振動およびCH₂変角振動、1380cm^{-1} CH₃対称変角振動、720cm^{-1} (CH₃)₄対称4直鎖鎖各振動等の吸収によって明らかである。

土壌試験の結果、n-ヘキサシン抽出物質量は期間中に顕著な減少を示しているが、放置後の試料についても、ガスクロマトグラム上で、その組成変化は見出されない。

ただしIRでは1720cm^{-1}付近にカルボニル基による

表8 GCによる大豆油の脂肪酸組成の経時変化

<table>
<thead>
<tr>
<th>fatty acid</th>
<th>記号</th>
<th>組成(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>単独</td>
</tr>
<tr>
<td></td>
<td></td>
<td>開始前</td>
</tr>
<tr>
<td>palmitic acid</td>
<td>C₁₆</td>
<td>10.7</td>
</tr>
<tr>
<td>stearic acid</td>
<td>C₁₈</td>
<td>3.9</td>
</tr>
<tr>
<td>oleic acid</td>
<td>C₁₈F₁</td>
<td>23.9</td>
</tr>
<tr>
<td>linoleic acid</td>
<td>C₁₈F₂</td>
<td>54.4</td>
</tr>
<tr>
<td>linolenic acid</td>
<td>C₁₈F₃</td>
<td>7.1</td>
</tr>
</tbody>
</table>

計 100 100 100 100

表9 GCによる植物油腐白土の脂肪酸組成の経時変化

<table>
<thead>
<tr>
<th>fatty acid</th>
<th>記号</th>
<th>組成(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>単独</td>
</tr>
<tr>
<td></td>
<td></td>
<td>開始前</td>
</tr>
<tr>
<td>palmitic acid</td>
<td>C₁₆</td>
<td>11.4</td>
</tr>
<tr>
<td>stearic acid</td>
<td>C₁₈</td>
<td>5.0</td>
</tr>
<tr>
<td>oleic acid</td>
<td>C₁₈F₁</td>
<td>28.1</td>
</tr>
<tr>
<td>linoleic acid</td>
<td>C₁₈F₂</td>
<td>48.9</td>
</tr>
<tr>
<td>linolenic acid</td>
<td>C₁₈F₃</td>
<td>6.6</td>
</tr>
</tbody>
</table>

計 100 100 100 100
表 10 GC による魚油の脂肪酸組成の測定変化

<table>
<thead>
<tr>
<th>fatty acid</th>
<th>記号</th>
<th>開始前</th>
<th>155日後</th>
<th>組成 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>myristic acid</td>
<td>C14</td>
<td>5.0</td>
<td>6.0</td>
<td>4.8</td>
</tr>
<tr>
<td>myristoleic acid</td>
<td>C14F1</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>pentadecylac acid</td>
<td>C15</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>palmitic acid</td>
<td>C16</td>
<td>11.8</td>
<td>14.2</td>
<td>11.0</td>
</tr>
<tr>
<td>palmitoleic acid</td>
<td>C16F1</td>
<td>10.3</td>
<td>11.8</td>
<td>10.1</td>
</tr>
<tr>
<td>margaric acid</td>
<td>C17</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>stearic acid</td>
<td>C18</td>
<td>1.5</td>
<td>2.3</td>
<td>1.5</td>
</tr>
<tr>
<td>oleic acid</td>
<td>C18F1</td>
<td>22.7</td>
<td>23.4</td>
<td>21.0</td>
</tr>
<tr>
<td>linoleic acid</td>
<td>C18F2</td>
<td>1.6</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>eicosenoic acid</td>
<td>C20F1+C20F2</td>
<td>16.3</td>
<td>21.5</td>
<td>16.0</td>
</tr>
<tr>
<td>linolenic acid</td>
<td>C20F3</td>
<td>2.1</td>
<td>0.7</td>
<td>2.2</td>
</tr>
<tr>
<td>octadecatetraenoic acid</td>
<td>C18F4</td>
<td>11.7</td>
<td>17.7</td>
<td>12.6</td>
</tr>
<tr>
<td>erucic acid</td>
<td>C22F1</td>
<td>10.1</td>
<td>tr</td>
<td>10.8</td>
</tr>
<tr>
<td>eicosapentaenoic acid</td>
<td>C20F5</td>
<td>5.7</td>
<td>tr</td>
<td>7.0</td>
</tr>
</tbody>
</table>

計

| | 100 | 100 | 100 | 100 | 100 |

吸収が若干ではあるが存在しており、また試験管内に発生したカビの状態からみても酸化分解の進行はみとめられる。

(2) 原油タンクスラッジ

試料中の飲物油の組成については GC により C16 ～ C22 の n-パラフィンが確認されており、さらに試料を提供された近隣産の飲物油の資料の KY によれば、C22 以前までの n-パラフィンを含むことがみとめられている。また IR では、時節飲物油庫のと同様に n-パラフィンの吸収があるほか、1600cm⁻¹ C-C 伸縮振動、900～700 cm⁻¹ C-H 面外変角振動の吸収から芳香族の存在もみとめられ、また720cm⁻¹ および730cm⁻¹ の伸び 2 本の吸収より、かなりの量のワックス分をも含むことがわかる。

培養試験の結果、n-ヘキサン抽出物質は、試料を 1 ％添加した場合、5 ％添加した場合含の実験条件においては同一程度で測定している。GC の結果からは、C22 以下の炭化水素の減少がいちじるしく、実験の初期では C16 以下の炭化水素の減少が目立った、日数が経つつれてさらに、C22 ～ C28 の減少が顕著になっていく傾向がある。なお、C22 以上のものは115日経過した試料においても減少がみられず、最終的には C22 ～ C28 の消失が顕著にみられるという結果を得た。IR においては、大きなパターン変化はみられないので、1700cm⁻¹ 付近にカルボニル基による吸収は現れているところから、なんらかの酸化分解が生じていることがうかがえる。

(3) 油水分離機械での試料の油分化成績

試料の油分成績は、GC により C16 ～ C22 の n-パラフィンが確認できるが、油浸油に由来すると思われる大きなコブがチャート上に観察され、したがってイソパラフィン、ナフテン類などももみとめられていると推測される。また IR においては、上記 n-パラフィンの吸収のほかに1720cm⁻¹ 付近にカルボニル基による強い吸収があり、脂肪酸を含むことが推測される。さらに1600cm⁻¹、900～700cm⁻¹ に芳香族によりと思われる吸収もみとめられる。

n-ヘキサン抽出物質は、試験的に減少しており、試験管にはカビの発生が極度に少ない。また5 ％のものは、50日目より出すもとから微細、温黒しており、外観的にみてもかなり分解が進んでいると思われる。GC による結果は、原油タンクスラッジにおいて、n-パラフィンの顕著な減少を示しているが、油浸油によると思われる大きなコブは依然として残存し、減少のきさしさみとめられない。IR に関しては、115日目の試料においても吸収スペクトルの変化が現れてなかった。

(4) B群油

試料の化学的組成は、GC により C16 ～ C22 の n-パラフィンが確認でき、また IR により、1600cm⁻¹、900～
700cm⁻¹の吸収から芳香族炭素化合物を含むことがわかる。

n-ヘキサン抽出物質量は全期間を通じてほとんど変化なく、GCによるパターン変化についても微差が少ないのが若干の減少を示しているだけで、培養初期と後期との間に大きな差異はみられていない。しかし、カビ等の繁殖やIRによる1700cm⁻¹付近のC=O伸縮振動の吸収がみられることより、多少の酸化が行われていることが推定できる。

4まとめ

本研究は油を含む廃棄物を埋立処分した場合、油分が土壌中どの程度分解するかを検討することを目的とした。土壌内での分解をみるために、試験管内の土壌に、計7種類の含油廃棄物および油試料（動植物油3種ならびに自動車油4種）をおのおの混合して、おおよね温度30℃、湿度100%の状態に放置し、一定期間ごとに取り出し、油分（n-ヘキサン抽出物質）の変化のパターンを求めた。その結果動植物油では初期から顕著な減少がみられるのに対し、動植物油でははるかに緩慢で、たとえば土壌に対し5%添加した大豆油が10日間で65%減少しているのに対し、動植物油廃棄物が100%、B重油が0%という結果が得られた。ただし廃棄物容器化、n-ヘキサン抽出物質でみた場合には変化がなくても、ガスクロマトグラフあるいは赤外吸収分析で物質組成を調べると、細かい点での変化は生じていることがわかった。なお今後は分解生成物の環境汚染からのかわかり合い等についても検討していく予定である。

引用文献
1）環境庁水質保全局企画課長・厚生省環境衛生局水質汚染総合研究室（環境管理担当）：油分を含む堆状物の取扱いについて（通知）昭和51．11．18．
4）日本油化学協会編：基準油脂試験法2.4.20.2-77脂肪酔メチルエステルの調製方法（その2）（フッ化ホウ素メチノール法）案, 1977．
5）出光興業（株）：原油タンクスラッシュのガスクロマトグラムーレポート, 1977．

Summary

Four oil based industrial wastes and three oils were added to soil respectively and incubated at 30℃ during 5 months, and the change of the amount of residual oils was examined. Mineral oils were pretty stable and vegetable or animal oils were reduced rapidly at an early stage. Chemical composition of these residual oils was investigated by gas chromatography and infrared absorption spectroscopy.